
Enabling better
device interaction
with accelerometer

etezian.org
Andi Shyti
Mika Laaksonen

3 Feb 2013

Andi Shyti – etezian.org

3D Accelerometer

● An accelerometer is a device which
recognizes the gravitational field and
acceleration on three axis X, Y and Z

● Use of it
– Detect movements

(or acceleration)

– Orientation

– Detect gestures

Andi Shyti – etezian.org

Gesture recognition (solution 1)

● Middleware software performs state machines for gesture
recognition by reading the XYZ data flow with a specific frequency
(in Hz)

Linux Kernel

Middleware

X, Y, Z

X, Y, Z

Detects
gestures

Andi Shyti – etezian.org

Gesture recognition (solution 2)

● An MCU device is placed as a “man in the middle”

Linux Kernel

Middleware

Detects gestures
and streams X, Y, ZMCU

X, Y, Z

Reacts to the
recognized gestures

IRQ

Enables/disables
state machine

Generates event

Enables/disables
state machine

Andi Shyti – etezian.org

Gesture recognition (solution 3)

● A specific gesture can be recognized on the Accelerometer itself

Linux Kernel

Middleware

Detects gestures
and/or streams X, Y, Z

Reacts to the
recognized gestures

IRQ

Generates event

Andi Shyti – etezian.org

Gesture recognition (solution 4)

● Middleware software chooses the gesture to be detected

Linux Kernel

Middleware

Detects gestures
and/or streams X, Y, Z

Reacts to the
recognized gestures

IRQ

Enables/disables
state machine

Loads a state
machines

Generates event

Andi Shyti – etezian.org

Gesture recognition

● We like solution 4 because:
– Less power consumption

– User space software has good flexibility

– Low memory requirement

– Easy to implement

● One drawback:
– The driver is a mess!

Andi Shyti – etezian.org

What's on the market

● Two devices

– Kionix: KXCNL
● http://www.kionix.com/accelerometers/kxcnl

– STMicroelectronics: LIS3DSH
● http://www.st.com/internet/analog/product/252716.jsp

http://www.kionix.com/accelerometers/kxcnl

Andi Shyti – etezian.org

The device

● The lis3dsh/kxcnl is a 3D accelerometer

● Two banks of registers for programmable patterns are available

– Finite state machines is selected for pattern recognition

Andi Shyti – etezian.org

The device

● Wide range of frequencies available

3.125Hz 320ms

6.25Hz 160ms

12.5Hz 80ms

25Hz 40ms

50Hz 20ms

100Hz 10ms

400Hz 2ms

1600Hz ~0ms (ultra speed)

● Ultra low power consumption from 50μA at 3.125Hz to 250μA at
1600Hz

Andi Shyti – etezian.org

Interrupt logic

● Two interrupt lines

– Active low / active high

– Pulsed / latched

– Inactive (high impedence)

● Interrupt are used to

– Data ready (only INT1)

– Signal pattern recognition (INT1 and INT2)

– It's possible to route INT1 to INT2 and vice-versa

Andi Shyti – etezian.org

State Machine registers

● Control registers for controlling the state machines

– Control Register 1: for state machine 1

– Control Register 2: for state machine 2
● Transition conditions and commands for executing the state machines algorithms

– ST1_1 to ST1_16: state machine 1

– ST2_1 to ST2_16: state machine 2
● Setting registers for parameters

– 4 timers (TIM1, TIM2, TIM3, TIM4)

– 2 thresholds (THRS1, THRS2)
● Output and status registers where to store the final result of a state machine

– OUTS1: for state machine 1

– OUTS2: for state machine 2

Andi Shyti – etezian.org

State Machine concept

● The device supports two state
machines, each state of a maximum
of 16 states

● Each state has a reset and a next
condition

– The next condition brings the
state machine to the next state

– The reset condition brings the
state machine to the first state

● An interrupt is generated at the final
state

● A program counter points to the
current state

STM_2

STM_3

STM_x

STM_n

STM_1

reset

reset

reset

reset

reset

next

next

next

next

Where n <= 16

Andi Shyti – etezian.org

State Machine concept

● Transition conditions are encoded on one byte to save memory size

● reset condition is stored on first 4th bits and the next on the other

– bit from MSB to MSB-4: reset condition

– bit from LSB to LSB+4: next condition

reset next

state X

from state X-1

to state X+1

to state 1

Andi Shyti – etezian.org

Transition condition
● Transition conditions can be used either as a reset value or as a next value

ID Logical name Meaning

0x0 NOP No operation

0x1 TI1 Timer 1 valid

0x2 TI2 Timer 2 valid

0x3 TI3 Timer 3 valid

0x4 TI4 Timer 4 valid

0x5 GNTH1 Any/triggered axis greater than threshold 1

0x6 GNTH2 Any/triggered axis greater than threshold 1

0x7 LNTH1 Any/triggered axis less or equal than threshold 1

0x8 LNTH2 Any/triggered axis less or equal than threshold 2

0x9 GTTH1 All axis greater than threshold 1

0xA LLTH2 All axis less than threshold 1

0xB GRTH1 Any/triggered axis greater than reversed threshold 1

0xC LRTH1 Any/triggered axis less or equal than reversed threshold 1

0xD GRTH2 Any/triggered axis greater than reversed threshold 2

0xE LRTH2 Any/triggered axis less or equal than reversed threshold 2

0xF NZERO Any axis crossing zero

Andi Shyti – etezian.org

Example: pulse detection

● The pulse is a short time peak of the acceleration on one axis

Acceleration

Time

Pulse time

T1 T2

THS1

Andi Shyti – etezian.org

Example: pulse detection

● The pulse is a short time peak of the acceleration on one axis

Acceleration

Time

Pulse time

T1 T2

THS1

acceleration >THS1no operation

T1 expiredacceleration < THS1

acceleration < THS1T2 expired

Andi Shyti – etezian.org

Example: pulse detection

● The pulse is a short time peak of the acceleration on one axis

Acceleration

Time

Pulse time

T1 T2

THS1

GNTH1NOP

TI1LNTH1

LNTH1TI2

Andi Shyti – etezian.org

Example: pulse detection

● The pulse is a short time peak of the acceleration on one axis

Acceleration

Time

Pulse time

T1 T2

THS1

0x50x0

0x10x7

0x70x2

Andi Shyti – etezian.org

Example: pulse detection

● The pulse is a short time peak of the acceleration on one axis

Acceleration

Time

Pulse time

T1 T2

THS1

0x05

0x71

0x27

Andi Shyti – etezian.org

Example: pulse detection

● Pulse detection with hysteresis

Acceleration

Time

Pulse time

T1 T2

THS1

0x05

0x71

0x28

THS2

where: 0x28 = 0x2 << 4 | 0x8 = TI2 << 4 | LNTH2

Andi Shyti – etezian.org

Example: pulse detection

● Pulse detection with hysteresis 0x50x0

0x10x7

0x70x2Acceleration

Time

Pulse time

T1 T2

THS1

THS1+HYST

THS1-HYST HYST1 HYST0HYST2

7 0

CONTROL REGISTER

GNTH1 = greater than thrs1 + hyst
LNTH1 = greater than thrs1 - hyst

Andi Shyti – etezian.org

Commands

● Commands allow to perform operations on the algorithm

● They are stored on the same memory where transitions are stored

● Some commands have parameters and the value is stored on the
next register

● The use of commands decreases the number of states

Andi Shyti – etezian.org

ID Logical
name Explanation Parameter

Only
STM2

0x00 STOP Stop execution, and resets reset-point to None

0x11 CONT Continues execution from reset-point None

0x22 JMP Jump address for two Next conditions byte 1 conditions, byte 2 jump
addresses

0x33 SRP Set reset-point to next address / state None

0x44 CRP Clear reset-point to start position (to 1st None

0x55 SETP Set parameter in register memory byte 1 address, byte 2 value

0x66 SETS1 Set new setting to Settings 1 register byte 1 value of settings register

0x77 STHR1 Set new value to /THRS1_y register byte 1 value if threshold1 register

0x88 OUTC Set outputs to output registers None

0x99 OUTW Set outputs to output registers and wait for latch reset from host None

0xAA STHR2 Set new value to /THRS2_y register byte 1 value if threshold2 register

0xBB DEC Decrease long counter -1 and validate None

0xCC SISW Swaps sign information to opposite in mask and trigger None

0xDD REL Releases temporary output information None

0xEE STHR3 Set new value to /THRS3 register byte 1 value if threshold3 register

0xFF SSYNC Set synchronization point to other State None

0x12 SABS0 Set /SETTy, bit ABS = 0. Select unsigned filter None

0x13 SABS1 Set /SETTy, bit ABS = 1. Select signed filter ON None

0x14 SELMA Set /MASAy pointer to MAy (set MASAy = 0) None

0x21 SRADI0 Set /SETT2, bit RADI = 0. Select raw data mode None *

0x23 SRADI1 Set /SETT2, bit RADI = 1. Select difference data mode None *

0x24 SELSA Set /MASAy pointer to SAy (set MASAy = 1) None

0x31 SCS0 Set /SETT2, bit D_CS = 0. Select DIFF data mode None *

0x32 SCS1 Set /SETT2, bit D_CS = 1. Select Constant Shift data mode None *

0x34 STRAM0 Set /SETTy, bit R_TAM = 0. Temporary Axis Mask /TAMxAy is kept intact None

0x41 STIM3 Set new value to /TIM3_y register byte 1 value if timer3 register

Andi Shyti – etezian.org

● Mask logic is property of kxcnl/lis3dsh
programmable functionality

● Doesn't affect data when streamed but only
when processed by the state machine logic

● The mask allows to redefine the XYZ
coordinates of the sensor

● Mask can hold information on state machines
like double tap direction

Mask logic

Andi Shyti – etezian.org

Mask logic

● Mask logic is property of kxcnl/lis3dsh programmable functionality
● Doesn't affect data when streamed but only when processed by the state

machine logic
● The mask allows to redefine the XYZ coordinates of the sensor
● Mask can hold information on state machines like double tap direction
● Mask calculation is done wit the formula:

M×m⃗=m⃗mbinary conversion matrix

vector containing the value to be masked

vector containing the masked value

Andi Shyti – etezian.org

Mask logic

Accelerometer device may be soldered on a different coordinates system

M=[
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

]

Andi Shyti – etezian.org

Mask logic implementation

● Matrix building
 /* build mask matrix */
 sdata­>mask_matrix[0] = 1 <<
 (ETZKX_DIMENSION ­ (sdata­>pdata­>x_map + 1) * 2 +
 !sdata­>pdata­>x_negate);
 sdata­>mask_matrix[1] = 1 <<
 (ETZKX_DIMENSION ­ (sdata­>pdata­>x_map + 1) * 2 +
 sdata­>pdata­>x_negate);
 sdata­>mask_matrix[2] = 1 <<
 (ETZKX_DIMENSION ­ (sdata­>pdata­>y_map + 1) * 2 +
 !sdata­>pdata­>y_negate);
 sdata­>mask_matrix[3] = 1 <<
 (ETZKX_DIMENSION ­ (sdata­>pdata­>y_map + 1) * 2 +
 sdata­>pdata­>y_negate);
 sdata­>mask_matrix[4] = 1 <<
 (ETZKX_DIMENSION ­ (sdata­>pdata­>z_map + 1) * 2 +
 !sdata­>pdata­>z_negate);
 sdata­>mask_matrix[5] = 1 <<
 (ETZKX_DIMENSION ­ (sdata­>pdata­>z_map + 1) * 2 +
 sdata­>pdata­>z_negate);
 sdata­>mask_matrix[6] = 2;
 sdata­>mask_matrix[7] = 1;

Andi Shyti – etezian.org

Mask logic implementation

● Matrix-vector remasking (multiplication)

static u8 etzkx_mask_orientation(struct etzkx_data *sdata, u8 val)
{
 int i;
 u8 new_val = 0;

 if (!val)
 return 0;

 for (i = 0; i < ETZKX_DIMENSION; i++)
 if (sdata­>mask_matrix[i] & val)
 new_val |= (1 << (ETZKX_DIMENSION ­ 1 ­ i));

 return new_val;
}

Andi Shyti – etezian.org

Advanced features

● DIFF (diff and constant shift)
● Hysteresis
● Peak detection
● Synchronized execution of state machines
● Decimation

Andi Shyti – etezian.org

Linux Kernel Driver

● Status of the driver
– Soon it will be available on www.etezian.org

– Mature enough to be sent upstream, patches are almost ready

● Location
– drivers/misc/etzkx.c

– include/linux/i2c/etzkx.h

– Documentation/misc-devices/etzkx.txt

● The driver supports only Kionix kxcnl device, lis3dsh
support is planned

http://www.etezian.org/

Andi Shyti – etezian.org

Linux Kernel Driver

● Driver stack

lis3dsh/kxcnl

I2C xfer

I2C smbus

etzkx

sysfs input chardev

user space

Andi Shyti – etezian.org

Linux Kernel Driver

● Interfaces
– /sys/class/i2c-adapter/i2c-n/<i2c-addr>/: handles

the device

– /dev/input/eventX: receives X, Y, Z data streaming

– /dev/etzkx_stm: handles state machines

Andi Shyti – etezian.org

Linux Kernel Driver

● Character device interface (/dev/etzkx_stm)
– Is the interface which allows to enable a specific

state machine and retrieve the status of the
running state machines

– With a poll interface is possible to get the results
of the enabled state machine

● Enabling/disabling state machines is done via
ioctl(), awful but simplifies considerably the
driver's mess

Andi Shyti – etezian.org

Linux Kernel Driver

● Driver state flow

STDBY ACTIVE

STDBY

STM1

STM2

STRM STDBY

STRM
STM2

STM1
STM2

STRM
STM1

STRM
STM1
STM2

Andi Shyti – etezian.org

Linux Kernel Driver

● State machines currently supported
– Timing: testing state machine which jumps from a state to

the next after a time threshold

– Orientation detection: sends an interrupts every time that a
change of orientation has occurred (landscape/portrait)

– Double tap

– Sleep/wakeup: sends an interrupt every time the device
has not been moved for a time threshold and any time that
the device has been moved after a sleep state

Andi Shyti – etezian.org

Contacts

● Contacts for hardware request
– Rohm/Kionix: Timo Havana <timo.havana@fi.rohmeurope.com>

– ST: Luca Fontanella <luca.fontanella@st.com>

● Contacts for software support
– Andi Shyti <andi@etezian.org>

– Mika Laaksonen <mika@etezian.org>

● The slides are available on
– http://www.etezian.org/files/fosdem13_stm_accel.pdf

and soon other related stuff will be published

● Feel free to contact me at anytime

mailto:timo.havana@fi.rohmeurope.com
mailto:luca.fontanella@st.com
mailto:andi@etezian.org
http://www.etezian.org/files/fosdem13_stm_accel.pdf

Andi Shyti – etezian.org

Any questions?

Andi Shyti

Mail: andi@etezian.org
Irc: cazzacarna (freenode)
Web: www.smida.it

Etezian.org

www.etezian.org
info@etezian.org
#etezian on freenode

http://lists.etezian.org/listinfo/etezian

mailto:andi@etezian.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

